

Image Formation

- For natural images we need a light source (λ) : wavelength of the source). $- E(x, y, z, \lambda)$: incident light on a point (x, y, z world coordinates of the point
- Each point in the scene has a reflectivity function.

 $-r(x, y, z, \lambda)$: reflectivity function

• Light reflects from a point and the reflected light is captured by an imaging \blacksquare $-c(x,y,z,\lambda)=E(x,y,z,\lambda)\times r(x,y,z,\lambda)$: reflected light.

y $E(x, y, z, \lambda)$ $c(x, y, z, \lambda) = E(x, y)$ **Camera** $(c(x, y, z, \lambda))$

Inside the Camera - Projection

$$
\text{Camera}\big(\mathbf{c}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda)\big) = \sqrt{\frac{c}{\lambda}}
$$

• Projection (P) from world coordinates (x, y, z) to camera coordinates $(x', y') [c_p(x', y', \lambda) = \mathcal{P}(c(x, y, z, \lambda))].$

 \odot Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brookly

Projections

• There are two types of projections (P) of interest to us:

- 1. Perspective Projection
	- $-$ Objects closer to the capture device appear big image formation situations can be considered to this category, including images take[n by](#page-25-0) came human eye.
- 2. Ortographic Projection
	- $-$ This is "unnatural". Objects appear the san gardless of their distance to the "capture devi
- Both types of projections can be represented via mathem mulas. Ortographic projection is \textit{easier} and is sometimes mathematical convenience. For more details see [1].

Example - Perspective

• Perspective Projection: $\Delta_1 = \Delta_2$, $l_1 < l_2 \rightarrow \delta_2 < \delta_1$.

Example - Ortographic

• Ortographic Projection: $\Delta_1 = \Delta_2$, $l_1 < l_2 \rightarrow \delta_2 = \delta_1$.

Inside the Camera - Sensitivity

- Once we have $c_p(x',y',\lambda)$ the characteristics of the capture d over.
- $V(\lambda)$ is the *sensitivity function* of a capture device. Each capt has such a function which determines how sensitive it is in the range of wavelengths (λ) present in $c_p(x', y', \lambda)$.

 \bullet The result is an "image function" which determines the reflected light that is captured at the camera coordinates $f(x', y') = \int c_p(x', y', \lambda) V(\lambda) d\lambda$

Example

Let us determine the image functions for the above sensitivity functions imaging the same

1. This is the most realistic of the three. Sensitivity is concentrated in a band aroun

$$
f_1(x',y') = \int c_p(x',y',\lambda)V_1(\lambda)d\lambda
$$

2. This is an unrealistic capture device which has sensitivity only to a single way determined by the delta function. However there are devices that get close to select behavior.

$$
f_2(x', y') = \int c_p(x', y', \lambda) V_2(\lambda) d\lambda = \int c_p(x', y', \lambda) \delta(\lambda - \lambda_0) d\lambda
$$

= $c_p(x', y', \lambda_0)$

3. This is what happens if you take a picture without taking the cap off the lens of y

$$
f_3(x', y') = \int c_p(x', y', \lambda) V_3(\lambda) d\lambda = \int c_p(x', y', \lambda) 0 d\lambda
$$

= 0

Sensitivity and Color

• For a camera that captures color images, imagine that it $sensors$ at each (x', y') with sensitivity functions tuned to th wavelengths red, green and blue, outputting three image functions

$$
f_{\mathbf{R}}(x', y') = \int c_p(x', y', \lambda) V_{\mathbf{R}}(\lambda) d\lambda
$$

\n
$$
f_{\mathbf{G}}(x', y') = \int c_p(x', y', \lambda) V_{\mathbf{G}}(\lambda) d\lambda
$$

\n
$$
f_{\mathbf{B}}(x', y') = \int c_p(x', y', \lambda) V_{\mathbf{B}}(\lambda) d\lambda
$$

• These three image functions can be used by display device your monitor or your eye) to show a "color" image.

[Sum](#page-0-0)mary

• The image function $f_C(x', y')$ $(C = R, G, B)$ i[s formed a](#page-0-0)s:

$$
f_{\rm C}\left(x',y'\right) \;=\; \textstyle{\int c_p(x',y',\lambda)V_{\rm C}\left(\lambda\right)}d\lambda
$$

- It is the result of:
	- 1. Inci[dent light](#page-5-0) $E(x, y, z, \lambda)$ at the point (x, y, z) in the s
	- 2. The reflectivity function $r(x, y, z, \lambda)$ of this point,
	- 3. The formation of the reflected light $c(x, y, z, \lambda) = E$ $r(x, y, z, \lambda),$
	- 4. The projection of the reflected light $c(x, y, z, \lambda)$ from dimensional world coordinates to two dimensional car dinates which forms $c_p(x', y', \lambda)$,
	- 5. The sensitivity function(s) of the camera $V(\lambda)$.

Digital Image Formation

- \bullet The image function $f_{\text{C}} \left(x^{\prime}, y^{\prime} \right)$ is still a function of $x^{\prime} \in [x^{\prime}_{min}, x^{\prime}_{n}]$ $\frac{\prime}{m}$ $[y'_{min}, y'_{max}]$ which vary in a continuum given by the respective
- The values taken by the image function are real numbers w vary in a continuum or interval $f_{\text{C}}(x', y') \in [f_{min}, f_{max}]$.
- \bullet Digital computers cannot process parameters/functions that continuum.
- \bullet We have to *discretize*:
	- 1. $x', y' \Rightarrow x'_i$ y'_j $(i = 0, \ldots, N - 1, j = 0, \ldots, M - 1)$: Samp 2. $f_{\rm C} (x'_i)$ f_i, y'_j \Rightarrow $\hat{f} \circ (x'_i)$ ζ_i, y_j'): Quantization.

Sampling

$$
comb(x',y') = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \delta(x'-i\Delta_x, y'-j\Delta_y)
$$

• Obtain sampling by utilizing $f_C(x', y') \times comb(x', y')$.

Example

© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brookly

Idealized Sampling

- We will later see that by utilizing $f_C(x', y') \times comb(x', y')$, it to discretize (x',y') and obtain a new "image function" that on the discrete grid (x_i^{\prime}) (i, y'_j) $(i = 0, \ldots, N - 1, j = 0, \ldots, M - 1)$
- For now assume that we somehow obtain the sampled imager $f_{\rm C}$ (x'_i) $'_{i},y'_{j})$.
- \bullet To denote this discretization refer to $f_{\rm C} \left(x_i^{\prime}\right)$ $f_i, y_j')$ as $f_{\rm C}\left(i,j\right)$ fro

Quantization

- $f_c(i, j)$ $(i = 0, \ldots, N 1, j = 0, \ldots, M 1)$. We have the second discretization left.
- $f_C(i, j) \in [f_{min}, f_{max}], \forall (i, j).$
- Discretize the values $f_C(i, j)$ to P levels as follows: Let $\Delta_Q = \frac{f_{max}-f_{min}}{P}$ $\frac{-f_{min}}{P}$

$$
\hat{f}_{\mathrm{C}}\left(i,j\right)=Q(f_{\mathrm{C}}\left(i,j\right))
$$

where

$$
Q(f_{\mathcal{C}}(i,j)) = (k+1/2)\Delta_Q + f_{min}
$$

if and only if $f_{\mathcal{C}}(i,j) \in [f_{min} + k\Delta_Q, f_{min} + (k+1)]$
if and only if $f_{min} + k\Delta_Q \le f_{\mathcal{C}}(i,j) < f_{min} + (k+1)$
for $k = 0, ..., P - 1$

Example

© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brookly

Quantization to P levels

- Typically $P = 2^8 = 256$ and we have $log_2(P) = log_2(2^8) = 8$ bit qu
- We have thus achieved the second step of discretization.
- From now on omit references to f_{min} , f_{max} and unless otherwise assume that the original digital images are quantized to 8 levels.
- To denote this refer to $\hat{f}_C(i,j)$ as taking integer values k wh 255, i.e., let us say that

$$
\hat{f}_{\rm c}(i,j) \in \{0, \ldots, 255\}
$$

[Summary](#page-13-0)

- "Let there be light" \rightarrow incident light \rightarrow reflectivity \rightarrow reflectivity \rightarrow projection \rightarrow sensitivity $\rightarrow f_{\text{C}}(x', y')$.
- Sampling: $f_C(x', y') \to f_C(i, j)$.
- Quantization: $f_c(i, j) \rightarrow \hat{f}_c(i, j) \in \{0, \ldots, 255\}$.

 $\hat{f}_{\text{\tiny R}}\left(i,j\right)$, $\hat{f}_{\text{\tiny G}}\left(i,j\right)$, $\hat{f}_{\text{\tiny B}}\left(i,j\right)$ $\;\rightarrow$ full color image

- \bullet $\hat{f}_{\text{\tiny R}}(i,j)$, $\hat{f}_{\text{\tiny G}}(i,j)$ and $\hat{f}_{\text{\tiny B}}(i,j)$ are called the (R,G,B) paramete the "color space" of the full color image.
- There are other parameterizations, each with its own advar disadvantages (see chapter 3 of the textbook [2]).

Grayscale Images

```
"Grayscale" image \hat{f}_{\text{gray}}(i, j)
```


- A grayscale or luminance image can be considered to be components of a different parameterization.
- Advantage: It captures most of the "image information".
- Our emphasis in this class will be on general processing. will mainly work with grayscale images in order to avoid t nuances involved with different parameterizations.

Images as Matrices

- Recalling the image formation operations we have discussed the image $\hat{f}_{\text{gray}}(i, j)$ is an $N \times M$ matrix with integer entries in $0, \ldots, 255$.
- \bullet From now on suppress $\hat{(\,\,)}_{\rm grav}$ and denote an image as a matr B, ..., etc.) with elements $A(i, j) \in \{0, ..., 255\}$ for $i = 0, ...,$ $0, \ldots, M-1$.
- So we will be processing matrices!
- Warning: Some processing we will do will take an image $A(i, j) \in \{0, \ldots, 255\}$ into a new matrix B which may not ha entries!

In these cases we must suitably $scale$ and $round$ the elemer order to display it as an image.

Matrices and Matlab

- The software package Matlab is a very easy to use tool that in matrices.
- We will be utilizing Matlab for all processing, examples, h etc.
- If you do not have access to Matlab, a copy licensed for use will be provided to you. See the end of this lecture for in and details.

Example - I

Example - II

• The image of a circle (256×256) of radius 80 pixels centered at (128, 128):

$$
B(i,j) = \begin{cases} 255 & \text{if } \sqrt{(i-128)^2 + (j-128)^2} < 80 \\ 0 & \text{otherwise} \end{cases}
$$

>> for
$$
i = 1 : 256
$$

\nfor $j = 1 : 256$
\n $dist = ((i - 128)^2 + (j -$
\nif $(dist < 80)$
\n $B(i, j) = 255$;
\nelse
\n $B(i, j) = 0$;
\nend
\nend
\n \gg image(B);
\n>> colourmap(gray(256));
\n>> axis("image");

Example - III

• The image of a "graded" circle (256×256) : $C(i, j) = A(i, j) \times B(i, j) / 255$

>> for $i = 1 : 256$ for $j = 1 : 256$ $C(i, j) = A(i, j) * B(j)$ end end \gg image(C); >> colormap(gray(256)); >> axis('image');

Homework I

- 1. If necessary, get a copy of matlab including a handout an introduction to matlab. You may do so at the Multir $(LC 008)$ in the Brooklyn campus. The preferred time is \ afternoon.
- 2. Get a picture of $yourself$ taken. Make sure it is 8 bit grayscal how to read your picture into matlab as a matrix. Again, y so at the Multimedia Lab. $(LC 008)$ in the Brooklyn campu
- 3. Display your image and obtain a printout. Try " $>>$ hel instructions within matlab.

If you are at a different campus and have problems with the abo tions please send me email. Please note that this is a one time do your best.

References

- [1] B. K. P. Horn, Robot Vision. Cambridge, MA: MIT Press, 1986.
- [2] A. K. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.